SECTION 260513 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes cables and related splices, terminations, and accessories for medium-voltage electrical distribution systems.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS
A. Product Data: For each type of cable indicated. Include splices and terminations for cables and cable accessories.
B. Samples: 16-inch (400-mm) lengths of each type of cable indicated.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For [Installer] [testing agency].
B. Material Certificates: For each cable and accessory type, signed by manufacturers.
C. Source quality-control test reports.
D. Field quality-control test reports.

1.6 QUALITY ASSURANCE
A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.
B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing.
Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain cables and accessories through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with IEEE C2 and NFPA 70.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify [Architect] [Construction Manager] [Owner] no fewer than [two] <Insert number> days in advance of proposed interruption of electric service.

2. Do not proceed with interruption of electric service without [Architect's] [Construction Manager's] [Owner's] written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Cables:
 c. General Cable Technologies Corporation.
 d. Kerite Co. (The); Hubbell Incorporated.
 e. Okonite Company (The).
 f. Pirelli Cables & Systems NA.
 g. Rome Cable Corporation.
 h. Southwire Company.
 i. <Insert manufacturer's name.>

NEW SCHOOL OF SAN JUAN
SAN JUAN, PUERTO RICO
MEDIUM-VOLTAGE CABLES
2. **Cable Splicing and Terminating Products and Accessories:**

 a. Engineered Products Company.
 c. MPHusky.
 d. Raychem Corp.; Telephone Energy and Industrial Division; Tyco International Ltd.
 e. RTE Components; Cooper Power Systems, Inc.
 f. Scott Fetzer Co. (The): Adalet.
 g. Thomas & Betts Corporation.
 h. Thomas & Betts Corporation/Elastimold.
 i. 3M; Electrical Products Division.
 j. <Insert manufacturer's name.>

2.2 **CABLES**

A. Cable Type: [MV90] [MV105].

C. Conductor: [Copper] [Aluminum].

D. Conductor Stranding: [Compact round, concentric lay, Class B)] [Concentric lay, Class B].

E. Strand Filling: Conductor interstices are filled with impermeable compound.

F. Conductor Insulation: Crosslinked polyethylene.

G. Conductor Insulation: Ethylene-propylene rubber.

 2. Insulation Thickness: [100] [133] percent insulation level.

H. Shielding: [Copper tape] [Solid copper wires], helically applied over semiconducting insulation shield.

I. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.

J. Three-Conductor Cable Assembly: Three insulated, shielded conductors cabled together[with ground conductors].

 1. Circuit Identification: Color-coded tape (black, red, blue) under the metallic shielding.

K. Cable Armor: [Interlocked aluminum] [Interlocked galvanized steel] [Corrugated aluminum tube] applied over cable.

L. Cable Jacket: [Sunlight-resistant PVC] [Chlorosulfonated polyethylene, CPE].
2.3 SPLICE KITS

A. Connectors and Splice Kits: Comply with IEEE 404; type as recommended by cable or splicing kit manufacturer for the application.

B. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.

1. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.
4. Premolded EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.

2.4 SOLID TERMINATIONS

A. Multiconductor Cable Sheath Seals: Type recommended by seal manufacturer for type of cable and installation conditions, including orientation.

2. Cold-shrink sheath seal kit with preformed sleeve openings sized for cable and insulated conductors.
3. Heat-shrink sheath seal kit with phase- and ground-conductor rejacketing tubes, cable-end sealing boot, and sealing plugs for unused ground-wire openings in boot.
4. Cast-epoxy-resin sheath seal kit with wraparound mold and packaged, two-part, epoxy-resin casting material.

B. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class is equivalent to that of cable. Include shield ground strap for shielded cable terminations.

1. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone rubber, insulator modules; shield ground strap; and compression-type connector.
2. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
3. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.
4. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.
5. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.
6. Class 3 Terminations: Kit with stress cone and compression-type connector.

C. Nonshielded-Cable Terminations: Kit with compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.

2.5 SEPARABLE INSULATED CONNECTORS

A. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

B. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.

C. Load-Break Cable Terminators: Elbow-type units with 200-A load make/break and continuous-current rating; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

D. Dead-Break Cable Terminators: Elbow-type unit with 600-A continuous-current rating; designed for de-energized disconnecting and connecting; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

E. Dead-Front Terminal Junctions: Modular bracket-mounted groups of dead-front stationary terminals that mate and match with above cable terminators. Two-, three-, or four-terminal units as indicated, with fully rated, insulated, watertight conductor connection between terminals and complete with grounding lug, manufacturer's standard accessory stands, stainless-steel mounting brackets, and attaching hardware.

1. Protective Cap: Insulating, electrostatic-shielding, water-sealing cap with drain wire.
2. Portable Feed-Through Accessory: Two-terminal, dead-front junction arranged for removable mounting on accessory stand of stationary terminal junction.
3. Grounding Kit: Jumpered elbows, portable feed-through accessory units, protective caps, test rods suitable for concurrently grounding three phases of feeders, and carrying case.

F. Test-Point Fault Indicators: Applicable current-trip ratings and arranged for installation in test points of load-break separable connectors, and complete with self-resetting indicators capable of being installed with shotgun hot stick and tested with test tool.

G. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.
2.6 ARC-PROOFING MATERIALS

A. Tape for First Course on Metal Objects: 10-mil- (250-micrometer-) thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.

B. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch (8 mm) thick, compatible with cable jacket.

C. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1/2 inch (13 mm) wide.

2.7 FAULT INDICATORS

A. Indicators: [Automatically] [Manually] reset fault indicator[with inrush restraint feature], arranged to clamp to cable sheath and provide a display after a fault has occurred in cable. Instrument shall not be affected by heat, moisture, and corrosive conditions and shall be recommended by manufacturer for installation conditions.

B. Resetting Tool: Designed for use with fault indicators, with moisture-resistant storage and carrying case.

2.8 SOURCE QUALITY CONTROL

A. Test and inspect cables according to [ICEA S-97-682] [ICEA S-94-649] before shipping.

B. Test strand-filled cables for water-penetration resistance according to ICEA T-31-610, using a test pressure of 5 psig (35 kPa).

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.

B. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

1. Where necessary, use manufacturer-approved pulling compound or lubricant that will not deteriorate conductor or insulation.

2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips that will not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

C. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.

D. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
E. Install direct-buried cables on leveled and tamped bed of 3-inch- (75-mm-) thick, clean sand. Separate cables crossing other cables or piping by a minimum of 4 inches (100 mm) of tamped earth. Install permanent markers at ends of cable runs, changes in direction, and buried splices.

F. Install "buried-cable" warning tape 12 inches (305 mm) above cables.

G. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit and support cables at intervals adequate to prevent sag.

H. Install cable splices at pull points and elsewhere as indicated; use standard kits.

I. Install terminations at ends of conductors and seal multiconductor cable ends with standard kits.

J. Install separable insulated-connector components as follows:
 1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.

K. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer’s written instructions, apply arc proofing as follows:
 1. Clean cable sheath.
 2. Wrap metallic cable components with 10-mil (250-micrometer) pipe-wrapping tape.
 3. Smooth surface contours with electrical insulation putty.
 4. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
 5. Band arc-proofing tape with 1-inch- (25-mm-) wide bands of half-lapped, adhesive, glass-cloth tape 2 inches (50 mm) o.c.

L. Seal around cables passing through fire-rated elements according to Section 078413 "Penetration Firestopping."

M. Install fault indicators on each phase where indicated.

N. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

O. Identify cables according to Section 260553 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Testing: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Testing: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
C. Perform the following field tests and inspections and prepare test reports:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS.
 Certify compliance with test parameters.
2. After installing medium-voltage cables and before electrical circuitry has been energized,
 test for compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260513